

SANTOPRENE® 101-45W255

SANTOPRENE®

A soft, black thermoplastic vulcanizate (TPV) in the thermoplastic elastomer (TPE) family. This material is designed for use in residential washing machine and dishwasher applications and contains a stabilization system for protection against copper and other metal-catalyzed degradation. This grade of Santoprene® TPV is shear-dependent and can be processed on conventional thermoplastics equipment for injection molding or extrusion. It is polyolefin based and recyclable within the manufacturing stream.

Key Features

- UL listed: file #QMFZ2.E80017, Plastics Component; file #QMFZ8.E80017, Plastics Certified For Canada -
- Property retention in presence of typical dishwasher and washing machine detergents

Product information

1 Todact information			
Resin Identification	TPV		ISO 1043
Part Marking Code	>TPV<		ISO 11469
Typical mechanical properties			
Tensile stress at 100% elongation, perpendicular	1.4	MPa	ISO 37
Tensile stress at break, perpendicular	4	MPa	ISO 527-1/-2 or ISO 37
Elongation at break, perpendicular	400	%	ISO 527-1/-2 or ISO 37
Shore A hardness, 15s	48		ISO 48-4 / ISO 868
Flammability			
Burning Behav. at thickness h	НВ	class	IEC 60695-11-10
Thickness tested	1.7	mm	IEC 60695-11-10
UL recognition	yes		UL 94
FMVSS Class	В		ISO 3795 (FMVSS 302)
Burning rate, Thickness 2 mm	37.3	mm/min	ISO 3795 (FMVSS 302)
Physical/Other properties			
Density	980	kg/m³	ISO 1183
Injection			

Drying Recommended	yes
Drying Temperature	80 °C
Drying Time, Dehumidified Dryer	≥3 h
Processing Moisture Content	≤0.08 %
Melt Temperature Optimum	200 °C
Min. melt temperature	185 °C
Max. melt temperature	220 °C
Mold Temperature Optimum	30 °C
Min. mould temperature	10 °C
Max. mould temperature	50 °C

Printed: 2025-05-30 Page: 1 of 2

Revised: 2025-04-22 Source: Celanese Materials Database

SANTOPRENE® 101-45W255

SANTOPRENE®

Characteristics

Processing Injection Moulding, Multi Injection Moulding, Extrusion, Sheet Extrusion, Coextrusion

Delivery form Pellets

Additional information

Injection molding Holding pressure should be about 50 to 75% of the actual injection pressure.

A high screw RPM (100 to 200) is recommended.

Back pressure is not always needed, however, a back pressure of 0.3 to 0.7 MPa may be used to ensure a homogeneous melt and maintain a consistent shot size. A higher back pressure is normally employed when using masterbatches.

Processing Notes Processing Notes

Desiccant drying for 3 hours at 80°C (180°F) is recommended. Santoprene® TPV has a wide temperature processing window from 175 to 230°C (350 to 450°F) and is incompatible with acetal and PVC.

Santoprene® TPV has a relatively high melt viscosity at low shear rates. Viscosity decreases as the shear rate increases.

Increasing temperature has little effect on TPV melt viscosity. Smaller gates and higher shear rates keep melt viscosity low and improve melt flow. Please also refer to the injection molding guide.

Printed: 2025-05-30 Page: 2 of 2

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may cause significant variations in data values. Properties of moulded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Other than those products expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any e

© 2025 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC.